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ABSTRACT: A scale-dependent localization (SDL) method was formulated and implemented in the Gridpoint

Statistical Interpolation (GSI)-based four-dimensional ensemble-variational (4DEnVar) system for NCEP FV3-based

Global Forecast System (GFS). SDL applies different localization to different scales of ensemble covariances, while

performing a single-step simultaneous assimilation of all available observations. Two SDL variants with (SDL-Cross)

and without (SDL-NoCross) considering cross-wave-band covariances were examined. The performance of two- and

three-wave-band SDL experiments (W2 andW3, respectively) was evaluated through 1-month cycled data assimilation

experiments. SDL improves global forecasts to 5 days over scale-invariant localization including the operationally

tuned level-dependent scale-invariant localization (W1-Ope). The W3 SDL-Cross experiment shows more accurate

tropical storm–track forecasts at shorter lead times than W1-Ope. Compared to the W2 SDL experiments, the W3 SDL

counterparts applying tighter horizontal localization at medium-scale wave band generally show improved global

forecasts below 100 hPa, but degraded global forecasts above 50 hPa. While the outperformance of the W3 SDL-

NoCross experiment versus theW2 SDL-NoCross experiment below 100 hPa lasts for 5 days, that of theW3 SDL-Cross

experiment versus the W2 SDL-Cross experiment lasts for 3 days. Due to local spatial averaging of ensemble covari-

ances that may alleviate sampling error, the SDL-NoCross experiments show slightly better forecasts than the

SDL-Cross experiments at shorter lead times. However, the SDL-Cross experiments outperform the SDL-NoCross

experiments at longer lead times, likely from retention of more heterogeneity of ensemble covariances and resultant

analyses with improved balance. Relative performance of tropical storm–track forecasts in the W2 and W3 SDL

experiments are generally consistent with that of global forecasts.

KEYWORDS: Kalman filters; Variational analysis; Ensembles; Numerical weather prediction/forecasting; Data

assimilation; Model initialization

1. Introduction

Ensemble-based data assimilation (DA) approaches, such as

ensemble Kalman filter (EnKF; Evensen 1994) and hybrid

ensemble-variational (EnVar) DA (Hamill and Snyder 2000;

Lorenc 2003; Buehner 2005; Wang et al. 2007b; Wang 2010),

have been widely used in many numerical weather prediction

(NWP) centers to produce initial conditions for medium-range

forecasts. In the ensemble-basedDA approach, an ensemble of

short-range forecasts is used to calculate flow-dependent back-

ground error covariances. This contrasts to the traditional three-

dimensional variational DA approach that assumes static

background error covariances. The advantage of the ensemble-

based DA approach over the pure variational DA approach

has been demonstrated in global and regional applications

(Wang et al. 2007a, 2008a,b, 2013; Wang 2011; Buehner et al.

2013, 2015; Clayton et al. 2013; Gustafsson et al. 2014; Wang

and Lei 2014; Lorenc et al. 2015; Kleist and Ide 2015a,b; Kutty

and Wang 2015).

Limited computational resources constrain the affordable

ensemble size to be much smaller than the degrees of freedom

of the model itself (Houtekamer and Zhang 2016). This results

in sampling error in the ensemble-based DA approach with

typical features including distant spurious correlations. The

successful application of an ensemble-based DA approach

relies on efficient treatment of sampling error. Directly in-

creasing ensemble size will reduce sampling error (Miyoshi

et al. 2014; Lei and Whitaker 2017; Huang and Wang 2018).

This, however, can be computationally prohibitive especially

for operational NWP applications. Alternatively, covariance

localization is applied in the ensemble-based DA approach to

gradually attenuate and even eliminate distant spurious cor-

relations caused by sampling error (Houtekamer and Mitchell

2001, 2005; Huang et al. 2019). Applying covariance localiza-

tion contributes to improved analyses and subsequent forecasts

(Houtekamer and Mitchell 1998, 2001; Bishop and Hodyss

2009; Buehner 2012; Anderson and Lei 2013; Gasperoni and

Wang 2015).

The rapid advancement of high-performance computing al-

lows future global NWP models to resolve a much wider range

of scales. DA algorithms that appropriately update a wide

range of scales will be required. Zhang et al. (2009) performed

a multistep sequential DA update by separately assimilating

different groups of observations and applying different locali-

zation length scales. In such a sequential approach, each group

of observations by design can only update certain scales, ne-

glecting that observations contain information that can be used

to update all resolved scales (Caron and Buehner 2018).Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
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Miyoshi and Kondo (2013) combined two sets of independent

analysis increments from assimilating the same set of obser-

vations, with each set utilizing different amounts of localiza-

tion. Both methods showed improved analyses and subsequent

forecasts in the EnKF systems compared to applying fixed

uniform localization once at all scales.

While the aforementioned methods took multiple steps or

adopted a sequential update, a single-step simultaneous multi-

scale update was proposed recently by introducing scale-

dependent localization (SDL) in the EnVar framework

(Buehner 2012; Buehner and Shlyaeva 2015) and in the pure

EnKF framework (Wang et al. 2021). The simultaneous SDL in

EnVar can be classified into two variants. The first variant com-

pletely eliminates the cross-wave-band covariances (Buehner

2012) (hereafter, referred to as SDL-NoCross). Mathematically,

SDL-NoCross equivalently applies a local spatial averaging of

ensemble covariances, which may alleviate sampling error and

improve the accuracy of ensemble covariances especially for a

small ensemble (Buehner and Charron 2007). Compared to ap-

plying afixeduniform localization once at all scales, SDL-NoCross

improved the general global forecast skill in a global 3DEnVar

(Buehner 2012) and 4DEnVar (Lorenc 2017) system.

The second simultaneous SDL variant takes into account

cross-wave-band covariances (hereafter, referred to as SDL-

Cross) (Buehner and Shlyaeva 2015). Compared to SDL-

NoCross, SDL-Cross may retain more heterogeneity of error

covariances (Caron and Buehner 2018). SDL-Cross was dem-

onstrated in a regional 3DEnVar sea ice DA system to perform

better than fixed uniform localization at all scales (Buehner

and Shlyaeva 2015). Caron and Buehner (2018) implemented

SDL-Cross in a global 3DEnVar system, and found improved

global forecasts over scale-invariant localization. Furthermore,

Caron et al. (2019) comparing SDL-NoCross and SDL-Cross

in a regional 3DEnVar system showed that SDL-NoCross

produced more accurate forecasts than SDL-Cross using a

25-member ensemble, while both performed comparably when

using a 75-member ensemble populated by time-lagged method

(Van Den Dool and Rukhovets 1994; Lorenc 2017; Huang

and Wang 2018). Caron et al. (2019) further hypothesized

that the relative performance between SDL-NoCross and

SDL-Cross could be associated with the accuracy of the es-

timated cross-wave-band covariances in SDL-Cross that de-

pended on ensemble size.

This paper addresses several additional questions on si-

multaneous SDL using the U.S. NWS GSI-based hybrid

4DEnVar system (Wang and Lei 2014; Kleist and Ide 2015a).

The GSI-based 4DEnVar system was recently integrated with

the U.S. next-generation nonhydrostatic Finite-Volume Cubed-

sphere dynamical core (FV3)-based GFS model (JCSDA 2018;

Chen et al. 2019; Zhou et al. 2019). To achieve the goal of

exploring new scientific questions associated with simulta-

neous SDL, we first demonstrated both SDL methods mathe-

matically in an EnVar framework that is preconditioned on the

full background error covariances (hereafter, referred to as B;

Derber andRosati 1989;Wang 2010), and implemented both in

the GSI-based hybrid 4DEnVar system. SDL formulations

within an EnVar framework preconditioned on the full B and

square root of B were also discussed in Caron et al. (2019).

Given that SDL-NoCross and SDL-Cross were only compared

for regional applications previously, this paper first evaluates

and compares both approaches for global forecasts. Second,

in previous studies, SDL was implemented with no explicit

level dependence and compared with level- and scale-

invariant horizontal localization. In our study, the base-

line operational GSI-based hybrid 4DEnVar system for the

FV3-based GFS applies scale-invariant, but level-dependent

horizontal localization. Therefore, how does SDL perform

relative to the stricter baseline that adopts scale-invariant, but

level-dependent horizontal localization? Third, in a global

modeling system, a tropical storm is at relatively small scale

and strongly influenced by the general large-scale environ-

mental flow (Zong andWu 2015). How would SDL-NoCross

and SDL-Cross influence the tropical storm–track forecasts

in the FV3-based GFS? Fourth, efficient scale separation in

SDL is essential and remains to be investigated. How does

the performance of SDL vary with different numbers of

decomposed wave bands (e.g., two versus three)? Finally,

diagnostics were performed to understand the different per-

formance between scale-invariant localization, SDL-NoCross

and SDL-Cross.

This paper is organized as follows. Section 2 describes the

SDL formulation and implementation in the GSI-based hybrid

4DEnVar system. Experiment design is described in section 3.

Sections 4 and 5 discuss the experiment results. In section 6,

some diagnostics are presented to understand the results in

sections 4 and 5. The computational cost is compared in

section 7. Section 8 presents the conclusions and discussion.

2. SDL formulation and implementation in the
GSI-based 4DEnVar system

a. General SDL formulation in the GSI-based 4DEnVar
system

The GSI-based 4DEnVar system is formulated and imple-

mented based on the extended control variable method, to

incorporate the ensemble background covariances within the

traditional variational framework (Wang 2010; Wang et al.

2013; Wang and Lei 2014). Mathematically, it is equivalent to

linearly combining the static and ensemble background co-

variances (Wang et al. 2007b, 2008a). In this study, SDL was

implemented in the GSI-based hybrid 4DEnVar system by

further extending control variables. In this section, the general

SDL formulation in the 4DEnVar system is first illustrated

following the notations inWang et al. (2013) andWang and Lei

(2014). Specific implementations of SDL-NoCross and SDL-

Cross are then detailed. To highlight the variables of further

extended dimension due to applying SDL, a ‘‘hat’’ sign is la-

beled above the letter or symbol.

Following the study of Buehner and Shlyaeva (2015), the

ensemble perturbations are first decomposed into J over-

lapping wave bands or scales indexed by j 5 1, . . . , J:

xek,j 5C
j
xek , (1)

where xek denotes the kth ensemble perturbation vector nor-

malized by (K2 1)1/2,K is the ensemble size,Cj is the spectral
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filter function that extracts the jth wave band, and xek,j is the kth

normalized ensemble perturbation vector that only contains

the jth wave band.

In 4DEnVar with SDL, the analysis increment x0t at time t

in a DA window is calculated as

x0t 5 x01 1 Î�
K

k51

[â
k
+(x̂ek)t] , (2)

where

Î5 ½ I I � � � I � , (3)

â
k
5

a
k,1

a
k,2

..

.

a
k,J

2
66664

3
77775
, and x̂ek 5

xek,1

xek,2

..

.

xek,J

2
6666664

3
7777775
. (4)

The first term on the right-hand side of Eq. (2) is the analysis

increment associated with the static background error covari-

ances. Matrix Î contains J identity matrices aligned in a row.

(x̂ek)t is a vector that concatenates J vectors of decomposed

xek,j ( j 5 1, . . . , J) for the kth member at time t. The three-

dimensional vector ak,j corresponds to the control variable

vector at the jth wave band for the kth member, and âk is

further extended control variable vector that concatenates J

vectors of ak,j for the kth member. The sign s denotes the

Schur product. Compared to Wang and Lei (2014) without

applying SDL, the control variable vector âk in Eq. (4) for the

kth member varies with the wave-band index j. Its dimension

is increased by a factor of J. As in Wang and Lei (2014), the

same set of âk is applied for all control variables that include

surface pressure, virtual temperature, wind, relative hu-

midity, cloud water, and ozone mixing ratio at different

time levels.

The analysis increment in Eq. (2) is obtained by minimizing

the following cost function:

J(x01, â)5
1

2
b
1
(x01)

T
B21

1 (x01)1
1

2
b
2
(â)TÂ21(â)

1
1

2
�
L

t51

(yo0t 2H
t
x0t)

T
R21

t (yo0t 2H
t
x0t) . (5)

On the right-hand side of Eq. (5), the first term is associated

with the static background covariance B1. In the second

term, â is the extended control variable vector that concat-

enates K vectors of âk in Eq. (4). The block-diagonal matrix

Â defines the localization matrix for within- and cross-wave-

band ensemble covariances (see more details later).In the

third term, yo0t , Ht, and Rt are the observation innovation

vector, linearized observation operator matrix, and obser-

vation covariance matrix at time t, respectively. The upper

bound of summation L is the number of time levels spanning

the DA window (e.g., 6 h). In addition, parameters b1 and b2

control the weights of the static and ensemble background

covariances. In the operational global GSI-based 4DEnVar

system at NCEP, (1/b1)1 (1/b2)5 1 is defined tomaintain the

total background variances following Wang et al. (2007b,

2008a) and Wang (2010).

In the global GSI-based 4DEnVar system, the localization

defined in Â is realized through spectral filter transformation in

the horizontal direction and recursive filter transformation in

the vertical direction. More details of implementing the hori-

zontal and vertical localization were described in Wang (2010)

and Wang et al. (2013). In this study, SDL is only applied for

horizontal localization. Specifically, the explicit formula of Â

can be written as

Â5

2
64
L̂ 0

1

0 L̂

3
75 . (6)

Each of the K blocks in Â contains the same predefined lo-

calization matrix L̂ with unit diagonal elements following

Buehner and Shlyaeva (2015):

L̂5

L̂
1,1

L̂
1,2

� � � L̂
1,J

L̂
2,1

L̂
2,2

� � � L̂
2,J

..

. ..
.

1 ..
.

L̂
J,1

L̂
J,2

� � � L̂
J,J

2
66666664

3
77777775
5

2
66666666664

L̂1/2
1,1

L̂1/2
2,2

..

.

L̂1/2
J,J

3
77777777775

3
h
L̂T/2
1,1 L̂T/2

2,2 � � � L̂T/2
J,J

i
,

(7)

where L̂j1,j2 5 L̂1/2
j1,j1L̂

T/2
j2,j2 ( j15 1, . . . , J and j25 1, . . . , J) defines

the localization matrix for the ensemble covariances between

the j1th and j2th wave bands. Equation (7) ensures the com-

plete localization matrix is positive semidefinite (Buehner and

Shlyaeva 2015). Given the design in Eq. (7), the within-wave-

band localization matrices have unit diagonal elements, while

the cross-wave-band localization matrices display less-than-

one diagonal elements (Fig. 1).

FIG. 1. Illustration of complete scale-dependent spatial locali-

zation matrix between Scale 1 and Scale 2 that represent large and

small scales, respectively, using a one-dimensional periodic domain

of 100 grid points.
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b. Specific implementations of SDL-NoCross and
SDL-Cross in the GSI-based 4DEnVar system

In this subsection, implementations of SDL-NoCross and

SDL-Cross in the GSI-based 4DEnVar system are further

described. Two major implementation differences are in-

volved. One is the definition of the spectral filter functionCj in

Eq. (1). The other is whether or not to zero out the cross-wave-

band localization matrix L̂j1,j2( j1 6¼ j2) in Eq. (7).

In SDL-Cross, it is required that the spectral filter functions

Cj over J wave bands sum to one to recover the original raw

ensemble perturbations from their decomposed components

(Buehner and Shlyaeva 2015), and that the cross-wave-band

localizationmatrix L̂j1,j2 ( j1 6¼ j2) is retained to partially include

cross-wave-band covariances. In a particular scenario of ap-

plying the same amount of localization at different wave bands,

SDL-Cross is equivalent to applying fixed uniform localization

once at all scales (Buehner and Shlyaeva 2015).

In contrast, SDL-NoCross requires that the squared spectral

filter functions Cj over J wave bands sum to one to maintain

the total raw ensemble variances (Buehner 2012), and that the

cross-wave-band localization matrix L̂j1,j2 ( j1 6¼ j2) is set to be

zero to completely remove cross-wave-band covariances.

3. Experiment design

The GSI-based 4DEnVar DA system and the FV3-based

GFS model were used for 1-month cycled DA experiments

from 0000 UTC 25 August to 1800 UTC 24 September 2017.

More details about the GSI-based EnVar system can be found

in Wang et al. (2013) and Wang and Lei (2014). A general

flowchart of the GSI-based EnVar system was shown in Fig. 1b

of Wang et al. (2013) that hybridizes the EnVar and EnKF

components for one DA cycle. The assimilated observations

over a 6-h DA window include all the conventional and sat-

ellite observations in the operational NCEP global DA sys-

tem (http://www.emc.ncep.noaa.gov/mmb/data_processing/

prepbufr.doc/table_2.htm and table_18.htm). Satellite radi-

ance data assimilation applied the same observation quality

control and bias correction in the operational global DA sys-

tem (Zhu et al. 2014).

The baseline 4DEnVar experiment (W1-Ope in Table 1)

was set up similarly to the operational system using a dual-

resolution configuration (JCSDA 2018). A one-member control

background is at a resolution of C384 (;25 km), while an 80-

member ensemble background is at a reduced resolution of

C192 (;50 km) (Putman and Lin 2007). In the EnVar update,

the one-member control background was updated using the

4DEnVar algorithm (Wang and Lei 2014; Kleist and Ide

2015a). Specifically, 12.5% static and 87.5% ensemble back-

ground covariances were combined to construct its hybrid form

as in the operational system. The 3-hourly ensemble pertur-

bations1 were ingested in the 4DEnVar update to account for

the temporal evolution. To deal with sampling error, locali-

zation was applied in both horizontal and vertical directions.

As in the operational system, the horizontal localization length

scale varies with model level (e.g., black dotted curve in Fig. 2),

and a fixed uniform vertical localization length scale is applied

at all model levels (Table 1). In addition, a tangent linear

normal mode initialization constraint (TLNMC, Kleist et al.

2009) was applied to alleviate the imbalance in the control

analysis as in the operational system.

In the EnKF update, the 4D local ensemble transform

Kalman filter (LETKF, Bishop et al. 2001; Hunt et al. 2007)

was adopted to update the 80-member background ensemble.

In the LETKF, the observation operators were calculated

through the GSI. To remedy sampling error, localization was

applied in the LETKF and defined by the Gaspari–Cohn

function (Gaspari and Cohn 1999). The exact cutoff distance in

the Gaspari–Cohn function is equivalent to multiplying the e-

folding localization length scales in the 4DEnVar update by a

factor of 2.577 (Pan et al. 2014). To remedy the background

ensemble spread deficiency, multiplicative inflation (Whitaker

and Hamill 2012) was employed to relax the posterior en-

semble spread back to 85% of the prior ensemble spread.

Stochastic parameterization schemes (Palmer et al. 2009; Lei

andWhitaker 2016, 2017; Huang andWang 2018) were further

applied to account for model uncertainty.

The GFS model using the nonhydrostatic Finite-Volume

cubed-sphere dynamical core (FV3; Lin 2004; Harris and Lin

2013) was used to provide the control and ensemble background

forecasts. The FV3-basedGFSwas configured similarly as in the

preoperational tests in Phase II of the Next-Generation Global

TABLE 1. List of DA experiments.

Expt

No. of

wave bands

Horizontal localization length

scale (e-folding distance)

Vertical localization length scale

(scale height, e-folding distance)

W1-Ope 1 Level-dependent length scale for full-scale ensemble perturbations

(black curve in Fig. 2)

0.5

W1-1000 1 1000 km for full-scale ensemble perturbations

W1-650 1 650 km for full-scale ensemble perturbations

W1-300 1 300 km for full-scale ensemble perturbations

W2-NoCross 2 1000 and 300 km for large- and small-scale ensemble perturbations,

respectivelyW2-Cross 2

W3-NoCross 3 1000, 650, and 300 km for large-, medium-, and small-scale

ensemble perturbations, respectivelyW3-Cross 3

1Operational 4DEnVar used 1-hourly interval.We adopt 3-hourly

interval for this study to save computational cost.
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Prediction System (NGGPS) project (https://www.weather.gov/

sti/stimodeling_nggps_implementation_atmdynamics). The model

configurations were detailed in Chen et al. (2019) and Zhou

et al. (2019). Due to computational constraints, the experi-

ments in this study were performed at a reduced horizontal

resolution compared to the preoperational tests. There are a

total of 64 model levels in the current FV3-based GFS model.

The 4D incremental analysis update (4DIAU) was further

applied for both control and ensemble forecasts to improve the

balance during the model integration (Bloom et al. 1996;

Lorenc et al. 2015; Lei and Whitaker 2016, 2017; Huang and

Wang 2018).

In SDL, the optimal way of performing scale separation re-

mains to be investigated. A tropical cyclone example (Fig. 3a)

was used to assist in scale separation in our SDL experiments.

As our initial examination, the first set of SDL experiments

adopted two wave bands, referred to as W2-NoCross and W2-

Cross in Table 1 that apply SDL-NoCross and SDL-Cross,

respectively. For the scale separation in the two-wave-band

SDL experiments, the tropical cyclone at relatively small scale

(Fig. 3c) was isolated from the general large-scale environ-

mental flow (Fig. 3b) using the example in Fig. 3a. The spectral

decomposition was performed using spherical harmonic

transform built in the operational GSI-based 4DEnVar system.

The resultant spectral filter functions (Figs. 4a,b) at the large-

and small-scale wave bands cross each other roughly at wave-

length 2500 km or at total wavenumber 16. The spectral filter

functions in SDL-NoCross were defined as the square root of

those in SDL-Cross following Caron et al. (2019). It is meant to

satisfy that the spectral filer functions sum to one in SDL-

Cross, while the squared spectral filter functions sum to one in

SDL-NoCross as discussed in section 2b. To define the hori-

zontal localization length scale in the two-wave-band SDL

experiments, several tuning tests were performed by referring

to the horizontal localization length scales applied in Caron

and Buehner (2018) and the operational level-dependent

horizontal localization length scales in W1-Ope. Finally, 1000

and 300 km e-folding distances were selected as the horizontal

localization length scales at all model levels for the large- and

small-scale ensemble perturbations in the two-wave-band SDL

experiments, respectively. To provide a more homogeneous

comparison with the two-wave-band SDL experiments apply-

ing level-invariant horizontal localization, another three ex-

periments of W1-1000, W1-650, and W1-300 (Table 1) were

designed. Different fromW1-Ope applying the level-dependent

horizontal localization, however,W1-1000,W1-650, andW1-300

apply the level-invariant horizontal localization length scales,

that is, 1000, 650, and 300 km e-folding distances, respectively.

Due to limited computational resources, only some simple

diagnostics in sections 4a and 6a, rather than the full 1-month

cycled DA experiments, were performed in W1-650 to inves-

tigate if SDL is equivalent to applying a fixed intermediate

localization length scale.

To explore how the SDL performance varies with the

number of decomposed wave bands, three-wave-band SDL

experiments were further designed such as W3-NoCross and

W3-Cross in Table 1 that apply SDL-NoCross and SDL-Cross,

respectively. Given the amount of experiments to be con-

ducted and the constraint of computational resources, only two

and three wave bands are experimented. For the scale sepa-

ration in the three-wave-band SDL experiments, the large-

scale background in the two-wave-band SDL experiments was

further decomposed to two wave bands, that is, the large- and

medium-scale wave bands in the three-wave-band SDL ex-

periments. As a result, the midlatitude high pressure (Fig. 3e)

that appears in the large-scale wave band in the two-wave-band

SDL experiments is further isolated from the global large-scale

environmental flow (Fig. 3d). The background of the small-

scale wave band in the three-wave-band SDL experiments

(Fig. 3f) was retained similarly as in the two-wave-band SDL

experiments (Fig. 3c) typically featured by the tropical cyclone.

Figures 4c and 4d show the resultant spectral filter functions at

large-, medium-, and small-scale wave bands in the three-wave-

band SDL experiments. Additional tuning tests were per-

formed to determine the horizontal localization length scales in

the three-wave-band SDL experiments. It did not provide ad-

ditional benefits by further increasing the horizontal localiza-

tion length scale beyond 1000 km e-folding distance for the

large-scale wave band in the three-wave-band SDL experi-

ments. The same set of 1000 and 300 km e-folding distances

were thus applied at the large- and small-scale wave bands in

FIG. 2. Level-dependent horizontal localization length scales

(unit: km) for W1-Ope (black) and level-invariant horizontal lo-

calization length scales at large- (red), medium- (green), and small-

(blue) scale wave bands in the two- and three-wave-band SDL

experiments in Table 1. Note that the horizontal localization length

scale is e-folding distance.
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the three-wave-band SDL experiments. Additionally, a 650 km

e-folding distance was selected at the medium-scale wave band

in the three-wave-band SDL experiments. Therefore, the main

difference in the two- and three-wave-band SDL experiments

is tighter horizontal localization applied at medium-scale wave

band in the three-wave-band SDL experiments. This would

facilitate interpreting performance differences between the

two- and three-wave-band SDL experiments.

Experiment descriptions are detailed in Table 1. For all of

the experiments in Table 1, they applied the 0.5 scale-height e-

folding distance at all model levels for the vertical localization.

On the other hand, in the LETKF update, all of the experi-

ments applied the same horizontal and vertical localization

length scales as in W1-Ope.

To provide a robust comparison among different experi-

ments, a paired permutation test was applied at 95% confi-

dence level with 1000 replicates (Manly 2006). Procedures in

Wang and Bishop (2005) were followed to collect independent

samples for the significance test. For the global forecast com-

parison in sections 4c, 4d and 5a, the time series were first av-

eraged in each of the independent subdomains distributed over

the globe. This produced spatially independent time series. For

the TC track forecast comparison in sections 4e and 5b, each

storm was treated as an independent case. For the power

spectral evaluation in section 6c, each model level was treated

as spatially independent. Then, for each set of spatially inde-

pendent time series, lag correlations were computed to further

determine the length of a temporal block so that the temporal

block series were weakly correlated in time. The objective of

the aforementioned procedures was to determine effective

degrees of freedom during the significance test. All sets of the

resultant temporally and spatially independent sample time

series were pooled together to perform the paired permutation

test. A false discovery rate method (Wilks 2006) was further

applied to ameliorate the simultaneous multiple hypothesis

test issue.

4. Comparison of two-wave-band SDL and
scale-invariant localization experiments

a. Single observation experiment

To demonstrate the impacts of SDL, a single observation

experiment was first performed forW1-1000, W1-650, W1-300,

FIG. 3. Two-dimensional wind vectors (unit: m s21) at 850 hPa in a tropical cyclone example at 1800 UTC 13 Sep 2013 at (a) full-scale,

and at (b) large- and (c) small-scale wave bands in the two-wave-band SDL experiments, and at (d) large-, (e) medium-, and (f) small-scale

wave bands in the three-wave-band SDL experiments. The gray contours beneath the wind vectors denote the geopotential height from

1420 to 1640 gpm with an interval of 20 gpm at 850 hPa at 1800 UTC 13 Sep 2013.
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W2-NoCross, and W2-Cross (Fig. 5). The case that likely

featured an interaction between a large-scale subtropical high

and mesoscale tropical cyclone was selected to more clearly

reveal the differences between SDL-Cross and SDL-NoCross.

As expected, in the scale-invariant localization experiments, a

tighter horizontal localization length scale produces a more

localized analysis increment pattern. In particular, in contrast

to W1-300 applying the tightest horizontal localization length

scale (Fig. 5c), W1-1000 and W1-650 applying relatively wider

horizontal localization length scales produce two analysis in-

crement maxima that are located at the observation location

and to the north of the tropical cyclone center (Figs. 5a,b),

respectively. The distant analysis increment maximum to the

north of the tropical cyclone center may suggest that the raw

ensemble covariances estimate an interaction between the

subtropical high and tropical cyclone. In addition, by applying

the same horizontal localization length scale 1000 km e-folding

distance for both large- and small-scale wave bands in W2-

Cross, it reproduces the same analysis increment pattern as

W1-1000 (not shown here). This is consistent with the theory

that applying the same amount of localization at different wave

bands in SDL-Cross is equivalent to applying fixed uniform

localization once at all scales (Buehner and Shlyaeva 2015).

This further suggests that SDL was correctly implemented in

the GSI-based 4DEnVar system. Due to applying a wider

horizontal localization length scale for large-scale ensemble

perturbations, W2-NoCross and W2-Cross show broader

analysis increment patterns than W1-300. Compared to W1-

1000, W2-NoCross and W2-Cross show overall more re-

stricted analysis increment patterns due to much tighter

horizontal localization applied for small-scale ensemble

perturbations. In addition, different analysis increment pat-

terns between W1-650 and W2-NoCross/W2-Cross suggest

that SDL is not equivalent to applying a fixed intermediate

localization length scale.

In addition, W2-NoCross only shows one analysis increment

maximum at the observation location, while W2-Cross that

partially includes cross-wave-band covariances maintains two

analysis increment maxima as in W1-1000 and W1-650. This

result suggests that the distant analysis increment maximum

to the north of the tropical cyclone center in W1-1000, W1-

650, and W2-Cross is contributed by the cross-wave-band co-

variances between the subtropical high and tropical cyclone.

The reduced magnitude of the analysis increment maxima

to the north of the tropical cyclone center in W2-Cross relative

to W1-1000 and W1-650 can be partially attributed to the

FIG. 4. Spectral filter functions for SDL-NoCross (dashed) and SDL-Cross (solid) in the(a),(b) two- and (c),(d)

three-wave-band SDL experiments at large- (L, red), medium- (M, green) and small- (S, blue) scale wave bands as a

function of the (a),(c) wavelength and (b),(d) total wavenumber. Note that the two-wave-band SDL experiments in

(a) and (b) only contain the large- and small-scale wave bands.
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less-than-one peak in the cross-wave-band localization matrix

applied in SDL as shown in Fig. 1. As expected, a further in-

spection of decomposed large- and small-scale analysis incre-

ments shows that W2-NoCross and W2-Cross show similar

large-scale analysis increment patterns as W1-1000 and similar

small-scale analysis increment patterns asW1-300 (not shown).

b. Analysis increment power

To investigate how the localization influences the analysis

increments at different scales, the analysis increment power

spectrumwas calculated as a function of total wavenumber and

averaged over the cycled DA period. Figure 6 shows the av-

eraged analysis increment power spectra for the temperature

and wind variables at 500 hPa. By applying a much wider

horizontal localization length scale at 500 hPa (roughly at the

0.5 sigma level in Fig. 2), W1-1000 shows larger analysis in-

crement power at all total wavenumbers compared to W1-300

and W1-Ope. W1-300 shows slightly reduced analysis incre-

ment power than W1-Ope, since it applies slightly tighter

horizontal localization at 500 hPa compared toW1-Ope. These

results suggest that broader horizontal localization generally

produces larger analysis increment power in our cycled DA

experiments. Furthermore, the analysis increment power in

W2-NoCross and W2-Cross is at a magnitude closer to W1-

1000 at small total wavenumbers and closer to W1-300 at large

total wavenumbers. This is to be expected because the two-

wave-band SDL experiments apply the same horizontal lo-

calization length scales as W1-1000 and W1-300 at small and

large total wavenumbers, respectively. The analysis increment

power differences between W2-NoCross and W2-Cross are

slightly more noticeable at small total wavenumbers.

c. Forecast verification against rawinsonde observations

Root-mean-square-errors (RMSEs) were calculated by

comparing the 6-h background forecasts against rawinsonde

observations (Fig. 7). In both subsections 4c and 4d, W1-Ope is

used as a reference for comparison. As discussed in section 3,

W1-Ope adopts the operationally tuned, level-dependent, scale-

invariant localization, and therefore provides a stricter refer-

ence compared to the level and scale-invariant localization

FIG. 5. 500 hPa meridional wind analysis increments (unit: m s21) in a tropical cyclone example at 1800 UTC 13 Sep 2013 from as-

similating a single meridional wind observation at the green dot that is 5m s21 higher than the background in (a) W1-1000, (b) W1-650,

(c) W1-300, (d) W2-NoCross, and (e) W2-Cross. The gray contours denote the full-scale geopotential height from 5760 to 5900 gpm with

an interval of 20 gpm at 500 hPa at 1800 UTC 13 Sep 2013.
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experiments, W1-300 and W1-1000. By applying a much wider

horizontal localization length scale for the full-scale ensemble

perturbations, W1-1000 shows the worst 6-h temperature and

wind forecasts for most vertical levels. Compared to W1-Ope,

W1-300 shows comparable or slightly improved 6-h back-

ground forecasts at several levels below 100 hPa especially for

the wind forecasts. This suggests that slightly reducing the

horizontal localization length scale below 100 hPa in W1-Ope

may further benefit the forecasts at such levels. However, W1-

300 produces larger temperature forecast error than W1-Ope

above 100 hPa. It is also noticed that W1-1000 has the least

degradation relative to W1-Ope above 100 hPa compared to

lower levels. These results together suggest that a wider hori-

zontal localization length scale for the full-scale ensemble

perturbations is generally beneficial at uppermodel levels. This

is consistent with the current operational level-dependent

horizontal localization settings in W1-Ope, and may explain

the degradation in W1-300 above 100 hPa that applies much

tighter horizontal localization.

On the other hand, W2-NoCross and W2-Cross generally

improve the 6-h global forecasts over W1-Ope, W1-1000 and

W1-300 at most levels, suggesting the benefits of SDL. In

particular, W2-NoCross and W2-Cross that apply tighter hor-

izontal localization for the small-scale ensemble perturbations

show the largest improvement for 6-h temperature and wind

forecasts over W1-Ope above 200 hPa. Further diagnostic

shows that the percentage of variance projected onto large

scales increases above 200 hPa (not shown). The largest im-

provement above 200 hPa in W2-NoCross and W2-Cross is

likely to be related to more contributions from the wider

horizontal localization length scale applied at large-scale wave

band in the two-wave-band SDL experiments. The relative

performance between W2-NoCross and W2-Cross is a bit

mixed for the 6-h background forecasts below 300 hPa.

FIG. 6. Averaged analysis increment power spectra over the cycled DA period as a function of total wavenumber

for the (a) temperature (unit: K2) and (b) wind (unit: m2 s22) variables at 500 hPa in W1-Ope (black), W1-1000

(magenta), W1-300 (cyan), W2-NoCross (red), and W2-Cross (blue).

FIG. 7. Difference of the root-mean-square-error (RMSE) of the 6-h (a) temperature (unit: K) and (b) wind

background (unit: m s21) forecasts against the rawinsondes as a function of pressure level in W1-1000 (magenta),

W1-300 (cyan), W2-NoCross (red), and W2-Cross (blue) relative to W1-Ope. Negative (positive) values mean

improved (degraded) 6-h background forecasts relative to W1-Ope. The bold dot sign indicates the RMSE dif-

ference is statistically significant by applying a paired permutation test with the false discovery method at 5%

significance level. The dashed black line denotes zero values.
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However, W2-NoCross slightly improves the 6-h background

forecasts more than W2-Cross above 300 hPa. This result may

suggest the cross-wave-band covariances estimated by the en-

semble may not be reliable above 300 hPa, consistent with the

hypothesis in Caron et al. (2019) that relative performances

between SDL-NoCross and SDL-Cross depend on the accu-

racy of estimated cross-wave-band covariances.

d. Global forecast verification against ECMWF reanalyses

(ERA-Interim)

To evaluate medium-range global forecasts, root-mean-

square-errors (RMSEs) between the 5-day global forecasts

and ECMWF interim reanalysis (ERA-Interim; Dee et al.

2011) were calculated at selected levels every 6 h. Figure 8

shows the RMSE difference relative to W1-Ope as a function

of forecast lead time and pressure level. W1-1000 in general

shows the worst 5-day global temperature and wind forecasts

than W1-Ope. This further suggests negative impacts of ap-

plyingmuch wider horizontal localization lengths scale at these

selected model levels in W1-1000 than W1-Ope. Different

from the consistently degraded global wind forecasts, W1-1000

shows slightly better temperature forecasts than W1-Ope at

several lower levels within 2 days and at 10 hPa beyond 2 days.

This may suggest that the optimal localization length scale

varies with model variable. Compared to W1-Ope, W1-300

degrades global temperature forecasts above 150 hPa. This is

hypothesized to result from the negative impacts of applying

too-tight horizontal localization at such levels in W1-300 rel-

ative to W1-Ope. Compared to the global wind forecasts, the

more degraded global temperature forecasts above 150 hPa in

W1-300 may also suggest that the optimal horizontal locali-

zation length scale is variable-dependent. Below 150 hPa,

W1-300 produces slightly more accurate or comparable tem-

perature forecasts relative to W1-Ope. However, W1-300

shows more accurate global wind forecasts up to 50 hPa at

shorter forecast lead times. This is consistent with the 6-h

background forecast verification (see Fig. 7). This again sug-

gests the potential additional benefits of slightly reducing

horizontal localization length scale at lower model levels in the

operational hybrid 4DEnVar system for the global wind fore-

casts. Different from W1-1000 and W1-300, W2-NoCross and

W2-Cross that apply SDL consistently improve both global

temperature and wind forecasts over W1-Ope at most model

levels and forecast lead times. This result suggests SDL may

implicitly produce overall horizontal localization that is level-

and variable-dependent. This effect may be attributed to that

the relative variance projected on different scale wave bands

varies with variables and model levels. It is noticed that W2-

NoCross shows slightly degraded temperature forecasts rela-

tive to W1-Ope below 850 hPa between 3 and 4 days. This may

suggest that the current scale separation based on the wind

variable may not be optimal for the temperature variable, es-

pecially when applying SDL-NoCross.

Figures 9a and 9b further compare the 5-day global forecasts

between W2-NoCross and W2-Cross. W2-NoCross tends to

show slightly better global forecasts thanW2-Cross within 1-day

forecast lead times. Beyond 1 day, however,W2-Cross improves

the global forecasts over W2-NoCross. The advantage of

W2-NoCross at shorter forecast lead times may be associated

with the effective local spatial averaging of ensemble covari-

ances in SDL-NoCross, due to its neglect of cross-wave-band

covariances. While the local spatial averaging in SDL-NoCross

may help alleviate sampling error and improve fitting of the

analysis to the observations, it would possibly retain less het-

erogeneity of ensemble covariances (Caron et al. 2019). In

contrast, SDL-Cross partially includes the cross-wave-band

covariances and retains more heterogeneity of ensemble co-

variances. As detailed later in section 6b, W2-Cross analysis is

more balanced than W2-NoCross. The retained heterogeneity

of ensemble covariances in W2-Cross, together with its more

balanced analysis may explain its more accurate global fore-

casts at longer forecast times than W2-NoCross.

e. TC track forecast verification

As discussed in the introduction, tropical cyclone (TC) track

prediction requires that the TC, its embedded large-scale en-

vironment and their interaction to be analyzed properly.

Therefore, we further investigate how SDL influences the TC

track forecasts.

In the cycled DA experimental period, there were 15 named

TCs in the North Atlantic basin and North Pacific basin. Ten

TCs reached typhoon or hurricane category (Fig. 10). The

NCEP TC tracker (Marchok 2002) was used to calculate the

forecasted TC location. Following Wang and Lei (2014) and

Huang and Wang (2018), the TC track error was calculated

against the best track data2 and averaged over all 15 TCs. The

statistical significance tests were performed for paired track

error differences among all the experiments. In the TC track

forecast verification (Figs. 11 and 13), we selectedW2-Cross as

the referencing experiment. This selection aims to facilitate

displaying statistical significance results for the following three

comparisons: SDL versus scale-invariant localization, SDL-

NoCross versus SDL-Cross, and two- versus three-wave-band

SDL experiments. Figure 11a shows the TC track error dif-

ference relative toW2-Cross as a function of forecast lead time.

W1-Ope improves the TC track forecasts overW1–1000 almost

out to 5 days, and over W1-300 beyond 3 days. On the other

hand, W2-Cross and W2-NoCross show significantly improved

TC track forecasts over W1-1000 out to 4 days, and over W1-

300 beyond 3 days. These results suggest improved analyses in

W2-Cross and W2-NoCross relative to W1-1000 and W1-300

lead to improved subsequent TC track forecasts. Furthermore,

W2-Cross improves the TC track forecasts over W2-NoCross

beyond 3 days. This is consistent with better global forecasts in

W2-Cross relative toW2-NoCross at longer forecast lead times

in Figs. 9a and 9b. However, the TC track forecasts between

W1-Ope and W2-Cross are statistically indistinguishable. This

is not the case in their global forecast comparison in Figs. 8g

and 8h. It is hypothesized that the current scale separation in

the two-wave-band SDL experiments may not be sufficient to

improve the TC track forecasts. The impact of SDL on TC

2 The best TC track data are available at https://www.nhc.noaa.gov/

data/#hurdat and https://www.metoc.navy.mil/jtwc/jtwc.html?best-

tracks.
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FIG. 8. Globally and temporally averaged root-mean-square-error (RMSE) difference from W1-Ope

for the (left) temperature (unit: K) and (right) wind (unit: m s21) forecasts in (a),(b)W1-1000; (c),(d)W1-

300; (e),(f) W2-NoCross; and (g),(h) W2-Cross that were verified against ERA-Interim as a function of

forecast time out to 5 days on the horizontal axis and pressure level on the vertical axis. Blue (red) color

indicates the improved (degraded) forecasts relative to W1-Ope. The asterisks at the corresponding

forecast times and pressure levels indicate that theRMSE difference is statistically significant by applying

the paired permutation test with the false discovery method at 5% significance level.
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track forecasts will be further examined in the three-wave-

band SDL experiments in section 5b. The percentages of the

track forecasts that aremore accurate thanW2-Cross (Zapotocny

et al. 2008; Wang and Lei 2014) in Fig. 11b are consistent with

the TC track error differences in Fig. 11a. For instance, at the

forecast lead times beyond 2.5 days, more than 50% of the

track forecasts in W2-Cross are more accurate than W1-1000,

W1-300, and W2-NoCross.

5. Comparison of two- and three-wave-band SDL
experiments

To investigate how SDL performs in response to the number

of decomposed wave bands, the two- and three-wave-band

SDL experiments are further compared in this section. As

discussed in the introduction, the main difference in the two-

and three-wave-band SDL experiment designs is tighter hori-

zontal localization applied at medium-scale wave band in the

three-wave-band SDL experiments. Consistent with the two-

wave-band SDL experiments, the three-wave-band SDL ex-

periments improve the global temperature and wind forecasts

overW1-Ope at most model levels and forecast lead times (not

shown here). This section will focus on the comparison among

the two- and three-wave-band SDL experiments.

a. Global forecast verification against ERA-Interim

Figure 12 shows the RMSE difference of the global tem-

perature and wind forecasts against ERA-Interim between the

two- and three-wave-band SDL experiments. Above 50 hPa,

the three-wave-band SDL experiments produce generally less

accurate global forecasts over 5 days than their two-wave-band

SDL experiment counterparts. As discussed earlier, a wider

overall horizontal localization length scale is beneficial at up-

per model levels. Reduced overall horizontal localization

length scales in the three-wave-band SDL experiments, due to

tighter horizontal localization applied at medium-scale wave

band, may be the reason for the degraded global forecasts at

upper model levels. On the other hand, a tighter horizontal

localization length scale is beneficial overall at lower levels. So

an overall reduction in the horizontal localization length scale

in the three-wave-band SDL experiments may explain the

better global temperature and wind forecasts below 100 hPa, at

least out to 3 days compared to the two-wave-band SDL ex-

periments. In particular, the advantage of W3-NoCrsoss rela-

tive to W2-NoCross below 100 hPa lasts for nearly the entire

5 days, while that of W3-Cross relative to W2-Cross only lasts

out to 3 days. As detailed later in section 6b, the analysis in the

three-wave-band SDL experiments is more imbalanced than

the two-wave-band SDL experiment counterparts. Furthermore,

FIG. 9. As in Fig. 8, but for the global (left) temperature and (right) wind forecast RMSE difference between the

experiments applying SDL-Cross and SDL-NoCross in the (a),(b) two- and (c),(d) three-wave-band SDL exper-

iments. Blue (red) color indicates SDL-Cross shows improved (degraded) forecasts compared to SDL-NoCross.
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the increased imbalance fromW2-Cross toW3-Cross is larger

than that from W2-NoCross to W3-NoCross. So it is likely

that the negative impacts from less balanced analysis in W3-

Cross relative toW2-Cross overwhelm the positive benefits of

more accurate analysis resultant from its overall tighter

horizontal localization. This may explain why the improved

forecasts of W3-Cross versus W2-Cross below 100 hPa only

last up to 3 days.

FIG. 10. Best track of the tropical cyclones during the experiment period in the (a) Atlantic, (b) western Pacific, and (c) eastern

Pacific basins.

FIG. 11. (a) Track forecast error difference in W1-Ope (black), W1-1000 (magenta), W1-300 (cyan), and W2-

NoCross (red) relative to W2-Cross. The bold dots on the curves in (a) indicate that the track error difference is

statistically significant by applying the paired permutation test with the false discovery method at 5% significance

level at the corresponding forecast lead time. (b) Percentage of the track forecasts that are more accurate thanW2-

Cross with the same line colors in (a). The numbers right above the x axis in (b) denote the sample size at the

corresponding forecast lead time.
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Figures 9c and 9d show the forecast RMSE difference be-

tween W3-NoCross and W3-Cross. As in the two-wave-band

SDL experiments, W3-NoCross produces slightly more accu-

rate global wind forecasts within 12 h than W3-Cross. As the

forecast lead time increases, the global wind forecasts in W3-

Cross become more accurate thanW3-NoCross. This variation

of the wind forecast performance for W3-NoCross relative to

W3-Cross as the forecast lead time increases also happens to

the global temperature forecasts between 400 and 150 hPa, and

at about 10 hPa. As discussed in the two-wave-band SDL ex-

periments in section 4d, the better global forecasts ofW3-Cross

over W3-NoCross at longer forecast lead times may be asso-

ciated with retained heterogeneity of ensemble covariances

and more balanced analysis. However, it is also noted that the

outperformance of W3-Cross over W3-NoCross lasts for a

shorter period of time than that of W2-Cross over W2-

NoCross. This may be related to less amount of imbalance

reduction between SDL-Cross and SDL-NoCross when in-

creasing from two wave bands to three wave bands. Between

100 and 50 hPa, W3-Cross shows worse global temperature

forecasts than W3-NoCross over 5 days. However, this is nei-

ther the case betweenW2-NoCross andW2-Cross, nor the case

for the wind forecasts. These results suggest that the relative

performance between SDL-NoCross and SDL-Cross, owing to

the partial inclusion of cross-wave-band covariances in SDL-

Cross, could vary with the number of decomposed wave bands

in SDL, model level, and model variable.

b. TC track forecast verification

Figure 13 shows the TC track forecast error difference in the

two- and three-wave-band SDL experiments relative to W2-

Cross, and the percentages of the TC track forecasts that are

better thanW2-Cross.W1-Ope is included in Fig. 13 for further

comparison with the three-wave-band SDL experiments for

the TC track forecasts. W3-Cross significantly improves the TC

track forecasts over W1-Ope and W2-Cross within 2-day

forecast lead times. W3-NoCross in general shows more ac-

curate TC track forecasts than W2-NoCross between 1.5 and

3 days. Improved TC track forecasts in the three-wave-band

SDL experiments over their two-wave-band SDL counterparts

may benefit from the three-wave-band scale separation and

tighter horizontal localization length scale applied at medium-

scale wave band. For example, the decomposed wind back-

ground displays more representative and distinguished fea-

tures in the three-wave-band SDL experiments (Fig. 3).

However, W3-Cross shows statistically less accurate TC track

FIG. 12. As in Fig. 8, but for the global (left) temperature and (right) wind forecast RMSE difference between the

two- and three-wave-band SDL experiment counterparts that apply (a),(b) SDL-NoCross and (c),(d) SDL-Cross.

Blue (red) color indicates the three-wave-band SDL experiment shows improved (degraded) forecasts compared to

its two-wave-band experiment counterpart.
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forecast thanW2-Cross between 3 and 4 days. This is consistent

with its generally less accurate global forecasts in W3-Cross

thanW2-Cross at such forecast time periods. Furthermore, the

percentage differences in Fig. 13b are generally consistent with

the TC track error differences in Fig. 13a. For instance, more

than 50% of track forecasts in W3-Cross are more accurate

than W2-Cross between 12 h and 2.5 days.

6. Additional diagnostics to understand performance
differences

a. Localized correlation pattern comparison

To have a more systematic evaluation of localized correla-

tion patterns from all of the localization methods, a total of 200

localized meridional wind correlation samples at 500 hPa were

collected over the globe for all eight experiments. Figure 14

shows 45 localized correlation samples. In general, the local-

ized correlation patterns vary with latitude, geographical lo-

cation and weather system (Buehner 2012). As expected, a

tighter horizontal localization length scale produces more lo-

calized and smooth ensemble correlation patterns in the scale-

invariant localization experiments. W1-1000 applying the most

wide horizontal localization length scale shows the broadest

localized correlation patterns with the most heterogeneity and

largest amount of noise. In contrast, W1-650 shows narrower

and less noisy localized correlation patterns than W1-1000.

W1-300 shows the tightest and most smooth localized corre-

lation patterns. Slightly broader localized correlation patterns

in W1-Ope relative to W1-300 is because W1-Ope applies a

slightly wider horizontal localization length scale at 500 hPa

(Fig. 2). Due to a smaller horizontal localization length scale

applied at small- and/or medium-scale wave bands, the local-

ized correlation patterns in the SDL experiments are tighter,

smoother and retain less heterogeneity of ensemble corre-

lations compared to W1-1000. On the other hand, the SDL

experiments show broader localized correlation patterns

than W1–300 due to their wider horizontal localization

length scales applied at large- and/or medium-scale wave

bands. Owing to the local spatial averaging of ensemble

covariances, the localized correlation patterns from SDL-

NoCross tend to be less heterogenetic than those from SDL-

Cross. By applying a tighter horizontal localization length

scale at medium-scale wave band, the three-wave-band SDL

experiments produce more localized correlation patterns

than their two-wave-band SDL counterparts.

To further quantify and compare the spatial structure and

variation of localized ensemble correlations, the mean and

standard deviation of 200 correlation samples at 500 hPa were

calculated and shown as a function of distance in Fig. 15.

Consistent with Fig. 14, a tighter horizontal localization length

scale shows a narrower averaged localized correlation struc-

ture in the scale-invariant localization experiments. By apply-

ing the horizontal localization length scale of 300 km e-folding

distance at small-scale wave band, the two- and three-wave-

band SDL experiments show similar averaged localized cor-

relations as W1-300 at distances within 350 km. However, at

distances between 600 and 1500 km, the two- and three-wave-

band SDL experiments even show larger averaged localized

correlations than W1-1000. An inspection of nonlocalized en-

semble correlations at different wave bands shows that the

decomposed nonlocalized small-scale correlations have nega-

tive values at such intermediate distances (not shown).

Compared to W1-1000 that applies a much wider horizontal

localization length scale at all scales, the tighter horizontal

localization length scales applied at small- and/or medium-

scale wave bands in the two- and three-wave-band SDL ex-

periments would constrain more or even completely eliminate

these nonlocalized small-scale negative correlations, thus re-

sulting in their overall larger localized ensemble correlations at

such intermediate distances. Therefore, SDL could produce an

overall effective localization function having a different shape

from scale-invariant localization (e.g., non-Gaussian structure

in SDL versus Gaussian structure in scale-invariant localiza-

tion). The three-wave-band SDL experiments, applying a

tighter horizontal localization length scale at medium-scale

FIG. 13. As in Fig. 11, but for (a) the track forecast error difference and (b) percentage of more accurate track

forecasts in W1-Ope (black), W2-NoCross (red), W3-NoCross (orange), and W3-Cross (green) in contrast to

W2-Cross.
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FIG. 14. 45 localized meridional wind correlation samples at 500 hPa distributed over the globe in (a) W1-Ope,

(b)W1-1000, (c)W1-650, (d)W1-300, (e)W2-NoCross, (f)W2-Cross, (g)W3-NoCross, and (h)W3-Cross. The thin

gray contours give the geopotential height at 500 hPa. The colored contours display the correlationmagnitude from

0.15 to 0.95 with an interval of 0.2. The gray contours denote the geopotential height with an interval of 40 gpm at

500 hPa.
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wave band, show smaller averaged localized correlations at

distances between 350 and 1200 km. Due to the averaging of

200 correlation samples, the averaged localized correlation

differences in SDL-Cross and SDL-NoCross are almost indis-

tinguishable, which is not true in their case-by-case comparison

in Fig. 14.

As for the standard deviation of the localized correlations,

W1-1000 and W1-650 shows much larger standard deviation

than W1-300 and W1-Ope. This suggests that tighter localiza-

tion retains less spatial variation of raw ensemble correlations.

By applying tighter horizontal localization at small- and/or

medium-scale wave bands, all of the SDL experiments have

smaller standard deviation than W1-1000. Due to applying a

broader horizontal localization length scale at large- and/or

medium-scale wave bands, the SDL experiments show larger

standard deviation than W1-300 beyond 300 km. However,

within 300 km, W2-Cross and W3-Cross show comparable

standard deviation as W1-300, while W2-NoCross and W3-

NoCross have smaller standard deviation than W1-300. More

noticeably, the experiments applying SDL-Cross that partially

includes cross-wave-band covariances consistently show larger

standard deviation than those applying SDL-NoCross. This

may be an evidence that SDL-Cross partially including cross-

wave-band covariances contains higher degrees of heteroge-

neity than SDL-Cross as discussed in the introduction. Finally,

the three-wave-band SDL experiments show less standard

deviation or variation than their two-wave-band SDL experi-

ment counterparts at distances between 300 and 1700 km due

to the effective tighter localization in three band. Consistent

with the single observation experiments,W2-NoCross andW2-

Cross show large differences compared toW1-650 with respect

to localized correlation pattern and spatial variation in Figs. 14

and 15. This further suggests that SDL is not equivalent to

applying scale-invariant localization with an intermediate lo-

calization length scale.

b. Impact of dynamical balance

Covariance localization causes imbalance in the resultant

analyses in the ensemble-based DA system (Wang et al. 2007a;

Holland and Wang 2013; Wang et al. 2013; Lei and Whitaker

2016; Caron et al. 2019). To measure the imbalance, the

absolute hourly pressure tendency (Lynch and Huang 1992)

was calculated for all the seven experiments (Fig. 16). Statistical

significance results from the paired t-test applied in Fig. 16 show

that imbalance difference in the subsequent comparison of

paired experiments is statistically significant at 95% confidence

level. The operationally tuned, level-dependent horizontal lo-

calization length scale in W1-Ope is expected to better reflect

and maintain the dominating scale at each model level com-

pared to W1-1000 and W1-300 that use a single fixed horizontal

localization length scale at all model levels. This may lead to the

least imbalance in W1-Ope among all the scale-invariant local-

ization experiments. W1-300 is less balanced than W1-Ope,

consistent with applying tighter horizontal localization length

scales and the imbalances that may result. However, W1-1000 is

less balanced thanW1-Ope andW1-300. This seemingly out-of-

expectation result is consistent with Greybush et al. (2011) who

hypothesized that larger analysis increments that are required to

correct an inaccurate background have the potential of pro-

ducing more imbalance through the DA update. As shown in

Figs. 6 and 7, W1-1000 generally shows the worst background

forecasts, but the largest analysis increments compared to W1-

Ope and W1-300.

The analyses in the SDL experiments are less balanced than

W1-Ope, which could be because the overall effective hori-

zontal localization length scale in the SDL experiments is

smaller especially at upper model levels. Interestingly, the

analysis in SDL-Cross is more balanced than SDL-NoCross,

likely due to the partial maintenance of the cross-wave-band

covariances in SDL-Cross. The more balanced analysis in

SDL-Cross may contribute to its generally better forecasts at

longer forecast lead times than SDL-NoCross in section 5.

Furthermore, the three-wave-band SDL experiments are less

balanced than their two-wave-band SDL experiment coun-

terparts. This may be the result of reduced overall effective

horizontal localization length scales in the three-wave-band

SDL experiments.

c. Forecast error comparison as a function of total

wavenumber

To investigate how SDL affects forecast error at different

scales, the errors of the global forecasts against ERA-Interim

FIG. 15. (a) Mean and (b) standard deviation of 200 samples of localized meridional wind correlations as a function of distance on

the horizontal axis that were collected from W1-Ope (black), W1-1000 (magenta), W1-650 (yellow), W1-300 (cyan), W2-NoCross (red),

W2-Cross (blue), W3-NoCross (orange), and W3-Cross (green) in Fig. 14.
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in Fig. 8 were decomposed in spectral space and displayed as a

function of total wavenumber. A representative total energy

normwas performed on decomposed errors (Wang and Bishop

2003), and averaged over all selected levels in Fig. 8. Figure 17

shows the total energy error difference relative toW1-Ope as a

function of forecast lead time and total wavenumber. By

applying a wider horizontal localization length scale below

100 hPa, W1-1000 (Fig. 17a) shows larger error total energy

error than W1-Ope at most total wavenumbers and forecast

lead times. The smaller total energy error of W1-1000 versus

W1-Ope at total wavenumbers below 10 within 2 days may be

because a wider horizontal localization length scale contributes

positively to the large-scale component of ensemble covari-

ances and resultant analysis. In comparison, since tighter

localization is beneficial for the small-scale component of en-

semble covariances and resultant analysis, W1-300 (Fig. 17b)

generally shows smaller error than W1-Ope at total wave-

numbers above 10. At total wavenumbers below 10, W1-300

shows comparable or slightly larger error total energy than

W1-Ope.

In addition, the two- and three-wave-band SDL experiments

show smaller total energy error than W1-Ope at most total

wavenumbers and forecast lead times, especially for the ex-

periments applying SDL-Cross. Their largest total energy error

reduction relative to W1-Ope appears at total wavenumbers

between 5 and 20 beyond 3 days where W1-Ope shows the

maximum error total energy (not shown here). Without con-

sidering cross-wave-band covariances, the experiments apply-

ing SDL-NoCross tend to have slightly larger total energy error

than those applying SDL-Cross at longer forecast lead times.

For example, the experiments applying SDL-NoCross show

slightly larger total energy error than W1-Ope at total wave-

numbers of 3 and 4 beyond 2 days. However, this is not the case

for the experiments applying SDL-Cross, suggesting additional

benefits of partially including cross-wave-band covariances. By

applying a tighter horizontal localization for the medium-scale

wave band, the three-wave-band SDL experiments generally

show slightly larger total energy error than their two-wave-

band SDL counterparts, especially at total wavenumbers be-

tween 5 and 20 that correspond to the error total energy

maximum in W1-Ope. Overall, the SDL experiments, espe-

cially when including cross-wave-band correlations (SDL-

Cross), show the potential to improve global forecasts over

W1-Ope for nearly all total wavenumbers in contrast to a

subset of total wavenumbers in W1-1000 and W1-300.

7. Computational cost comparison

Table 2 summarizes the computational cost in wall clock

time in each of the four components in a single 4DEnVar DA

cycle. Further extending control variables in SDL increases the

amount of computation in the 4DEnVar update and total

computational cost, especially when a larger number of wave

bands are adopted in SDL. In general, the ensemble forecasts

are the most expensive component in an EnVar DA cycle.

Therefore, the two-wave-band and three-wave-band SDL

experiments only increase the total computational cost by

14% and 28%, respectively. Given that the two- and three-

wave-band SDL experiments significantly improve the global

forecasts to 5 days over the stricter referenceW1-Ope and that

W3-Cross even shows more accurate TC track forecasts than

W1-Ope at shorter forecast lead times, SDL shows promise to

be implemented operationally.

8. Conclusions and discussion

Two SDL variants, with (SDL-Cross) and without (SDL-

NoCross) considering cross-wave-band covariances were for-

mulated based on the full B-preconditioned EnVar, and im-

plemented in the GSI-based 4DEnVar system by further

extending control variables. SDL performs a single-step si-

multaneous assimilation of all available observations, while

applying different amounts of localization to different scales of

ensemble covariances. The complete removal of cross-wave-

band covariances in SDL-NoCross results in a local spatial

averaging of ensemble covariances (Buehner and Charron

2007) and retains less heterogeneity of ensemble covariances

(Caron et al. 2019). SDL-Cross partially includes cross-wave-

band covariances and retains more heterogeneity of ensemble

covariances than SDL-NoCross. The performances of SDL-

NoCross and SDL-Cross were evaluated for general global

forecasts and TC track forecasts in the FV3-based GFS

through 1-month cycled DA experiments.

The two-wave-band SDL experiments improve global fore-

casts to nearly 5 days over W1-1000 and W1-300 applying scale-

invariant, level-invariant localization, and even over W1-Ope,

which applies operationally tuned, scale-invariant, level-

dependent localization. By applying a much wider horizontal

localization length scale, W1-1000 generally degrades global

forecasts below 50 hPa relative to W1-Ope. By applying a

tighter horizontal localization scale, W1-300 shows worse

FIG. 16. Globally averaged absolute hourly surface pressure

tendency (unit: hPa 1 h21) inW1-Ope (black),W1-1000 (magenta),

W1-300 (cyan), W2-NoCross (red), W2-Cross (blue), W3-NoCross

(orange), and W3-Cross (green). The absolute hourly surface

pressure tendency was calculated after the four-dimensional in-

cremental analysis update (4DIAU) was complete, and averaged

over the last 4 weeks of the full cycled period.

496 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/03/22 06:18 PM UTC



global forecasts than W1-Ope at upper levels, especially for

temperature forecasts. As for TC track forecasts, the two-wave-

band SDL experiments outperform W1-1000 out to 4 days, and

over W1-300 beyond 3 days. W1-Ope generally produces more

accurate TC track forecasts than W1-1000 and W1-300.

To examine how SDL performs with respect to the number

of decomposed wave bands, the three-wave-band SDL exper-

iments were compared with the two-wave-band SDL experi-

ments. In their design, the three-wave-band SDL experiments

apply tighter horizontal localization at medium-scale wave

band compared to the two-wave-band SDL experiments. This

leads to overall tighter effective horizontal localization com-

pared to the two-wave-band SDL experiments. As suggested in

the cycled experiment results and the operationally tuned,

level-dependent, scale-invariant horizontal localization set-

tings, a wider horizontal localization length scale is beneficial at

upper levels, while a tighter horizontal localization makes

positive contribution at lower levels. Therefore, the reduced

effective horizontal localization length scale in the three-wave-

band SDL experiments may explain the generally degraded

FIG. 17. Power spectra of error total energy difference relative to W1-Ope in (a) W1-1000, (b) W1-300, (c) W2-

NoCross, (d) W2-Cross, (e) W3-NoCross, and (f) W3-Cross, as a function of forecast time to 5 days on the hori-

zontal axis and total wavenumber on the vertical axis. See the text for details of error total energy calculation. Blue

(red) color indicates smaller (larger) error total energy relative to W1-Ope. The asterisks at the corresponding

forecast times and total wavenumbers indicate that the error total energy difference is statistically significant by

applying the paired permutation test with the false discovery method at 5% significance level. Note that different

color bars are applied in (a),(b) vs (c)–(f) to more clearly show statistically significant positive error total energy

differences in (a) and (b).
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global forecasts above 50 hPa and better global forecasts below

100 hPa compared to the two-wave-band SDL counterparts.

On the other hand, the degraded global forecasts of W3-Cross

versus W2-Cross below 50 hPa at longer forecast lead times

may be the result of the advantage of reduced overall effective

horizontal localization length scale being overwhelmed by

more imbalance in the analysis. Compared to statistically in-

distinguishable TC track forecasts between W2-Cross and

W1-Ope, W3-Cross shows significantly improved TC track

forecasts than W1-Ope and W2-Cross within 2 days. This

suggests the important role of scale separation in the SDL

implementation, especially for TC track forecasts. This should

be explored in the future to further improve TC track forecasts

in the SDL experiments relative to W1-Ope.

Due to the local spatial averaging of ensemble covariances,

SDL-NoCross tends to show slightly better global forecasts

than SDL-Cross at shorter forecast lead times. At longer

forecast lead times, SDL-Cross outperforms SDL-NoCross

for the global forecasts, especially in the two-wave-band

SDL experiments. However, comparable performance be-

tween SDL-NoCross and SDL-Cross were found in Caron

et al. (2019) that run a 75-member ensemble populated by

time-lagged method in a regional 3DEnVar system. The better

forecast performance of SDL-Cross than SDL-NoCross at

longer forecast lead times in this study may benefit from its

more accurate estimate of cross-wave-band covariances by

directly running and updating an 80-member ensemble, higher

degrees of heterogeneity of ensemble covariances and more

balanced analysis in SDL-Cross. The TC track forecasts be-

tween SDL-Cross and SDL-NoCross are generally consistent

with their global wind forecasts at lower model levels. For

example, W2-Cross shows significantly better TC track fore-

casts than W2-NoCross at longer forecast lead times.

Due to further extending control variables, the two- and

three-wave-band SDL experiments increase total computa-

tional cost by 14% and 28%, respectively, compared to the

scale-invariant localization experiments. However, SDL shows

statistically significantly improved global forecasts and the

potential for improving TC track forecasts over scale-invariant

localization. Moreover, SDL without requiring additional en-

semble forecasts is computationally much cheaper than di-

rectly increasing ensemble size. Therefore, SDL shows the

potential to be implemented operationally.

By comparing localized ensemble correlations of W1-650

and two-wave-band SDL experiments, it suggests that SDL is

not equivalent to applying scale-invariant localization with an

intermediate localization length scale. In our current SDL

experiments, the localization length scale is level invariant.

However, the two-wave-band SDL experiments showed in-

creasing effective ensemble correlation length scales at large-

and small-scale wave bands as model level increases (not

shown here). Two-wave-band level-dependent SDL experi-

ments were motivated by increasing the horizontal localization

length scales beyond 1000 and 300 km e-folding distances for

the large- and small-scale wave band, respectively, above 0.3

sigma model level following the increasing trend in W1-Ope

(not shown here). However, compared to the two-wave-band

level-invariant SDL experiments, these two-wave-band level-

dependent SDL experiments showed degraded global fore-

casts above 200 hPa, but comparable global forecasts below

200 hPa and comparable TC track forecasts. The horizontal

localization length scales in the two-wave-band level-dependent

SDL experiments may need more tuning. Following Caron and

Buehner (2018), the objective method proposed by Ménétrier
et al. (2015) was attempted to determine optimal horizontal

localization length scale at each wave band in our SDL experi-

ments, but it showed worse global forecasts than our current

SDL experiments. This may be related to the assumption of

independent members in this objective method, which may be

not true in the operational NWP applications (Caron and

Buehner 2018). Research on seeking the optimal effective lo-

calization length scale in SDL would be further explored in the

future. In addition to applying SDL on the horizontal direction,

further development of SDL on the vertical direction is ongoing

in the GSI-based global 4DEnVar system. Furthermore, en-

couraging SDL results presented here also warrant its additional

tests in the operational global hybrid 4DEnVar where a higher

model resolution is used.
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